Stato solido di un API nello sviluppo di un Drug Delivery System

dr. FABIO CARLI
Università di Trieste
Dpt Ingegneria dei Materiali

consulente scientifico

falbertocarli@yahoo.it

THE INITIAL SOLID STATE OF API CAN INFLUENCE THE DDS PERFORMANCE

API SOLID STATE IN THE DVPT OF A DDS

THE SOLID STATE OF API CAN CHANGE ALONG THE PROCESS OF DDS PREPARATION

THE SOLID STATE OF API CAN CHANGE DURING THE DDS STORAGE

API SOLID STATE IN THE DEVELOPMENT OF A DDS

- Development of a Powder Inhalatory System by SCF, MCA
- Development of Composite Drug/Carrier Particles for Oral Improved Absorption by MCA
- Development of Drug/Polymer Composites by HME

- SCF Super Critical Fluid
- MCA Mechano-chemical Activation (High Energy Cogrinding)
- HME Hot Melt Extrusion

DRUG DELIVERY TO THE LUNGS

- nebulisers (atomized drug aqueous solution; scarce portability))
- p MDIs pressurized metered dose inhalers (propellant criticity)
- DPIs Dry Powder Inhalers (no propellant)

Drug particulate properties for pulmonary drug delivery (DPI)

Particle characteristics

- solid state (crystallinity, impurities, solubility.....)
- particle size and distribution, shape, porosity
- surface chemistry & energy
- coformulation, blending

Influence on formulation

- physicochemical stability, bioavailability, toxicity
- aerosolisation, deposition profile, bioavailability
- powder handling, dose metering and uniformity,
- Stability
- dose uniformity

Dry Powder Inhalers

First generation Drug Lactose (80-90%)Blends

Less than 20% Drug effectively delivered to lungs

Second generation Drug/carrier particle engeneering

Up to 30-40% Drug Dose delivered to lungs

drug, carrier surface are modified to optimize detachment of drug particles

DRUG SURFACE ENERGY
DRUG CRYSTALLINE STATE
DRUG PARTICLE SIZE

Drug particles deposited over lung alveoli must dissolve

In the lungs only 10-20 ml of aqueous fluid with bio-surfactants over 100 m² of lung alveoli surface

Drug API solid state characteristics (particle size, crstalline state & shape) even more critical than for other administration routes

API DRUG A

API DRUG A SCF PROCESSED

API DRUG B

API DRUG C

API DRUG B
API DRUG C
COCRYSTALS
COMPOSITE
SCF PROCESSED
PARTICLES

MDI migraine product with SCF processed drug particles

- MAP Pharmaceuticals Inc with Tempo™ device
- 'Levadex' inhaled version of dihydroergotamine tartrate; SCF processed drug particles
- Benefits of Levadex rapid onset, long lasting, broadly efficacious, convenient and consistent delivery, low incidence of side effects

SCF PROCESSED DHE ANTI-MIGRAINE DRUG PARTICLES; HUMAN BIOAVAILABILITY AFTER INHALATION

DRUG/CARRIER COMPOSITE PARTICLES

Drug - carrier composite particles can be prepared by different technologies:

- spray-drying
- super critical fluid SCF
- mechano-chemical fusion MCF

NEW DRUG /CARRIER COMPOSITE PARTICLES FOR INHALATION PULMATRIX®

drug/carrier composite prepared by spray-drying (proprietary carrier selection / final density – high drug dose)

Mechano-fusion powder deposition/coating

Carrier

Mechano-fusion reactor

Mechano-fusion reactor

MECHANO-CHEMICAL ACTIVATION BY HIGH ENERGY COGRINDING

MECHANO-CHEMICAL ACTIVATION BY HIGH ENERGY COGRINDING

MECHANO-CHEMICAL ACTIVATION MCA drug inclusion into polymer carrier by high energy cogrinding

High Energy planetary ball mill

SEM & EDS analysis of composite drug/carrier particles (EDS energy dispersive spectrometer)

PLANETARY BALL MILL

Fig. 3. Saturation solubility (pH 6.8) of GF from GF/HPMCAS **ball milled** composites containing 50 wt% GF and milled using different ratios powder mass/ball mass in and from spray dried solid dispersions.

DSC OF BALL MILLED DRUG/POLYMER AT DIFFERENT RATIOS POWDER MASS/BALL MASS

DRUG MELTING TEMPERATURE IS
INVERSELY PROPORTIONAL TO CRYSTAL SIZE

MECHANO-CHEMICAL ACTIVATION MCA drug inclusion into polymer carrier by high energy cogrinding

Amorphization
Degree of drug
Original
Crystallinity

Im = E / m
Intensity milling Im is the total
energy transferred per unit mass

HIGH ENERGY VIBRATION MILLS

Enhancement of dehydroepiandrosterone solubility and bioavailability by ternary MCA (High Energy vibration mill) with α -cyclodextrin and glycine

100 0 60 120 180 240 300 360 time (min)

DHEA dissolution rate

DHEA Plasma levels

DHEA DSC

Reproducibility of mechano-chemical activation

CRITICAL RELEVANCE OF DRUG API PHYSICO-CHEMICAL CHARACTERISTICS

particle size

crystalline state

Different particle sizes or crystalline structures can lead to different activation times

HOT MELT EXTRUSION

API

POLYMER

POWDERS

INJECTION MOLDING

FILMS

THE CRYSTALLINE API IS MELTED (DISSOLVED) IN THE POLYMER

API MOLECULARLY DISPERSED IN THE POLYMERIC FILM

THE CRYSTALLINE API IS DISPERSED MOLECULARLY IN THE POLYMER

LOW GLASS TRANSITION TEMPERATURE POLYMER CAN LEAD TO API PHYSICAL CHANGE (RECRYSTALLIZATION) DURING STORAGE

RELEVANCE OF PHYSICO-CHEMICAL PROPERTIES OF POLYMER CARRIER

API RECRYSTALLIZATION IN HME FILMS DURING STORAGE

CONCLUSIONS

API SOLID STATE IS CRITICAL IN THE PERFORMANCE OF ADVANCED POWDER DELIVERY SYSTEMS, E.G. INHALATORY

API SOLID STATE CAN BE CHANGED BY DDS PREPARATION PROCESS, E.G BY MECHANO-CHEMICAL ACTIVATION

API SOLID STATE CAN CHANGE DURING DDS STORAGE

API IN SOLID STATE PROCESSES, E.G. MECHANOCHEMICAL ACTIVATION

API SOLID STATE EVEN MORE CRITICAL