

CBC-PROCOS S.p.A.

Strategies to minimize the impact of presence of residual solvents in APIs

Damiana Gentili – Qualified Person, Quality Unit Director CBC Procos S.p.A.

Agenda

Definitions

Guidelines approach

DMF Sections

Main References

Strategy of control

Equipments

Impact on physical properties API level

Post approval changes

Definitions

Organic volatile chemicals:

- used or produced in the manufacture of drug substances or excipients, or in the preparation of drug products
- not completely removed by practical manufacturing techniques.

Relevant CTD sections for solvents MODULE 3

Module 3			
3.1	MODULE 3 TABLE OF CONTENTS		
3.2	BODY OF DATA		
3.2.S	DRUG SUBSTANCE		
3.2.S.1	General Information		
3.2.S.2	Manufacture	-	Module 3 (Cont.)
3.2.S.3	Characterisation	3.2.A	APPENDICES
3.2.S.4	Control of Drug Substance	3.2.A.1	Facilities and Equipment
3.2.S.5	Reference Standards or Materials	3.2.A.2	Adventitious Agents Safety Evaluation
3.2.S.6	Container Closure System	3.2.A.3	Novel Excipients
3.2.S.7	Stability	3.2.R	REGIONAL INFORMATION
3.2.P	DRUG PRODUCT	3.3	LITERATURE REFERENCES
3.2.P.1	Description and Composition of the Drug Product		
3.2.P.2	Pharmaceutical Development		
3.2.P.3	Manufacture		
3.2.P.4	Control of Excipients		
3.2.P.5	Control of Drug Product		
3.2.P.6	Reference Standards or Materials		
3.2.P.7	Container Closure System		
3.2.P.8	Stability		

Main relevant API DMF sections for solvents

- 3.2.S.2.2 Description of manufacturing process and in process control
- 3.2.S.3.2 Impurities
- 3.2.S.4.1 Specification
- 3.2.S.4.2 Analytical procedure
- 3.2.S.4.3 Validation of analytical procedure
- 3.2.S.4.5 Justification of specification

Where to start?

ICH guideline Q3C

http://www.ich.org/home.html

- USP <467> (Chemical tests Residual solvents)
- EP <5.4> Limiting residual solvents level in active substances, excipient and medicinal products
- Annexes to:

CPMP/ICH/283/95 Impurities: Guidelines for residual solvents

CVMP/VICH/502/99 Guidelines on impurities: Residual solvents

But....more if genotoxic compounds

Guideline approach

- Classification of solvents based on their severity
 - Class 1 solvents: Solvents to be avoided
 - Class 2 solvents: Solvents to be limited
 - Class 3 solvents: Solvents with low toxic potential
 - Others
- Limit definition
 - ESTABLISHED IN TABLES (based on daily dosage of 10 g)

 NO FURTHER CALCULATION IS REQUIRED
 - CASE BY CASE: ON PDE and DAILY DOSAGE

Recent Updatings (June 2015)

- MIBK will be placed into Class 2 (limited by health-basis) from Class 3 (no health-based).
- New solvent Triethylamine has also been included in Class 3.
 - New limit: ≤ 0,5%
 - Q&A EDQM (320 ppm for 10 g daily dose, based on a Permitted Daily Exposure of 3.2 mg/day)

TABLE 1. Class 1 solvents in pharmaceutical products (solvents that should be avoided).

Solvent	Concentration limit (ppm)	Concern
Benzene	2	Carcinogen
Carbon tetrachloride	4	Toxic and environmental hazard
1,2-Dichloroethane	5	Toxic
1,1-Dichloroethene	8	Toxic
1,1,1-Trichloroethane	1500	Environmental hazard

TABLE 3. Class 3 solvents which should be limited by GMP or other quality-based requirements.

Acetic acid	Heptane	
Acetone	Isobutyl acetate	
Anisole	Isopropyl acetate	
1-Butanol	Methyl acetate	
2-Butanol	3-Methyl-1-butanol	
Butyl acetate	Methylethyl ketone	
tert-Butylmethyl ether	Methylisobutyl ketone	
Dimethyl sulfoxide	2-Methyl-1-propanol	
Ethanol	Pentane	
Ethyl acetate	1-Pentanol	
Ethyl ether	1-Propanol	
Ethyl formate	2-Propanol	
Formic acid	Propyl acetate	

 $PDE = \frac{NOEL \times Weight \ Adjustment}{F1 \times F2 \times F3 \times F4 \times F5}$

TABLE 2. Class 2 solvents in pharmaceutical products.

Solvent	PDE (mg/day)	Concentration limit (ppm)
Acetonitrile	4.1	410
Chlorobenzene	3.6	360
Chloroform	0.6	60
Cumene ¹	0.7	70
Cyclohexane	38.8	3880
1,2-Dichloroethene	18.7	1870
Dichloromethane	6.0	600
1,2-Dimethoxyethane	1.0	100
N,N-Dimethylacetamide	10.9	1090
N,N-Dimethylformamide	8.8	880
1,4-Dioxane	3.8	380
2-Ethoxyethanol	1.6	160
Ethyleneglycol	6.2	620
Formamide	2.2	220
Hexane	2.9	290
Methanol	30.0	3000
2-Methoxyethanol	0.5	50
Methylbutyl ketone	0.5	50
Methylcyclohexane	11.8	1180
N-Methylpyrrolidone ²	5.3	530
Nitromethane	0.5	50
Pyridine	2.0	200
Sulfolane	1.6	160
Tetrahydrofuran³	7.2	720
Tetralin .	1.0	100
Toluene	8.9	890
1,1,2-Trichloroethene	0.8	80
Kylene*	21.7	2170

^{*}usually 60% m-xylene, 14% p-xylene, 9% o-xylene with 17% ethyl benzene

Strategy of control & impact at API level for solvents used in manufacturing

- Knowledge of the solvents used in the manufacturing process (and preferably in the key starting material)
- □ Evaluation of the capability of the manufacturing process to remove them by:
 - Distillation
 - Drying

...

Class 2, 3 if demonstration of absence at intermediate or API level (≤10%ICH limit)

NO NEED OF ROUTINE ANALYTICAL CHECK

□ Scientific identification of solvents « likely to be present» to be included in the API specification

Strategy of control & impact at API level: solvents used

API specifications

Class 1: normally absent

Class 2: listed with ICH limits, GC routinely

tested

Class 3 (only): monitored by LOD

If Class 2 + Class 3 solvents: listed with ICH by GC + LOD or only GC

Other solvents (only): listed with justified limit; skip test could be accepted

Strategy of control & impact at API level: toxic solvents as «by products» or used

- Limits set as for TTC approach (ICH M7 or Guideline on the limits of genotoxic impurities' EMEA/CHMP/QWP/251344/2006),
- GC validated analythical method
- Routinely check, if present
- □ If introduced at intermediates :demonstrated ≤30% below the ICH limit on 6 pilot or 3 industrial batches for API, API no routine test is required (Skip test)+ limit at intermediate
- □ If introduced at final stage :skip test if demonstrated ≤ 30% below the ICH limit at API

Strategy of control & impact at API level: example of toxic solvents as by products

- Benzene
 - Acetone
 - Methanol
 - Toluene
 - Epthane
 - **.**...

- Mesityl oxide
 - □ Acetone

Equipments

- □ GC systems with different injection mode and detectors
 - > Injection mode
 - Liquid (direct) injection
 - Head space (HS)
 - Detectors
 - Flame ionization detector (FID)
 - Thermal conductivity detector (TCD)
 - Mass spectrometer (MS)
- □ LC systems equipped with UV/PDA detectors for particular applications (es. Formamide)

Solvents may impact on physical properties of API

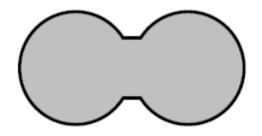
- Caking (the formation of lumps or hard blocks which reduce the flowability of solids) is produced by bulk cohesive strength between particles named as "solid bonds"
- Residual of solvents facilitate to create the solid bonds as for the follow:

Understanding powder caking: Predicting caking strength from individual particle contacts

M. Wahl a, U. Bröckel a, L. Brendel b, H.J. Feise c,*, B. Weigl c, M. Röck d, J. Schwedes d

a University of Applied Science Trier, Germany

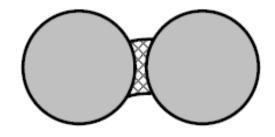
b University of Duisburg-Essen, Germany
Germany
Germany
Germany
Germany


^d Technical University Braunschweig, Germany

Impact on physical properties of API: caking

Solid bond bridge

a) Sinter bridge, melt bridge



Solid partially melt and solidify again.

During melting and solidification solid bonds are formed.

Temperatures of 1/3 – 2/3 of melting temperature cause solid bond during long time storages

b) Catalyzed solid, crysallising binder

Solid partially dissolves into the water or solvent adsorbed onto the surface and then precipitate again. During dissolution and precipitation solid bonds are formed

0.1% - 0.5% of water / solvent are enough for solid bonds formation.

Post approval changes for solvent EU vs US: an evaluation

Change description	US	EU
Solvent change before final intermediate	CBE 30	II or IB
Solvent change after final intermediate	PAS	II or IB
Solvent change with impact on impurity profile	PAS	II

Guidance for Industry - Changes to an approved NDA or ANDA

Reg CE 1234/2008

QUESTIONS?

Thanks for your attention!

gentili@procos.it